LP / ORNL DAAC UWG 2019
"How do I as a scientist use these technologies to advance my data workflows?"
- Aaron Friesz
Image Source: Jake VanderPlas, "The State of the Stack," SciPy Keynote (SciPy 2017).
Image Source: Theo McCaie, UK Met Office, ESA Φ-week Event.
Foster collaboration around open source scientific python ecosystem for ocean / atmosphere / climate science
Build out stack with domain specific packages (e.g. thermodynamics, regridding, vector calculus, etc)
Scale to handle many-PB data missions (e.g. SWOT, NISAR)
Image Source: https://earthdata.nasa.gov/about/cloud-evolution
Image Source: Pangeo Technical Architecture (https://pangeo.io/architecture.html)
Image Source: Multidimensional Arrays, Geohackweek 2016
Image Source: Multidimensional Arrays, Geohackweek 2016
Image Source: James Norton (Element 84)
Image Source: James Norton (Element 84)
Image Source: Scott Henderson (University of Washington)
andrew@element84.com
apawl.com/talks/pangeo-lp-ornl.html
from dask_jobqueue import PBSCluster
from dask.distributed import Client
cluster = PBSCluster(cores=36,
memory="108GB")
cluster.scale(10)
client = Client(cluster)
from dask_kubernetes import KubeCluster
from dask.distributed import Client
cluster = KubeCluster(n_workers=10)
cluster.scale(10)
client = Client(cluster)