EOSDIS SE TIM 2019
Foster collaboration around open source scientific python ecosystem for ocean / atmosphere / climate science
Build out stack with domain specific packages (e.g. thermodynamics, regridding, vector calculus, etc)
Scale to handle many-PB data missions (e.g. SWOT, NISAR)
# converting to intake catalog will enable intake tools such as gui browser
cat = intake.StacCatalog('landsat8-aws.json')
# or leverage existing tools such as sat-api/sat-search
cat = intake.StacSearch(collection='landsat8', bbox=[], datetime='2017/2019')
cat.filter(bands=['red','green','nir'], cloudcover=20)
# load as xarray dataset:
ds = cat.to_dask()
# need to share STAC catalogs with colleagues / reproduce work later
cat.to_file('my-catalog.json')
# converting to intake catalog will enable intake tools such as gui browser
cat = intake.StacCatalog('landsat8-aws.json')
# or leverage existing tools such as sat-api/sat-search
cat = intake.StacSearch(collection='landsat8', bbox=[], datetime='2017/2019')
cat.filter(bands=['red','green','nir'], cloudcover=20)
# load as xarray dataset:
ds = cat.to_dask()
# need to share STAC catalogs with colleagues / reproduce work later
cat.to_file('my-catalog.json')
# converting to intake catalog will enable intake tools such as gui browser
cat = intake.StacCatalog('landsat8-aws.json')
# or leverage existing tools such as sat-api/sat-search
cat = intake.StacSearch(collection='landsat8', bbox=[], datetime='2017/2019')
cat.filter(bands=['red','green','nir'], cloudcover=20)
# load as xarray dataset:
ds = cat.to_dask()
# need to share STAC catalogs with colleagues / reproduce work later
cat.to_file('my-catalog.json')
# converting to intake catalog will enable intake tools such as gui browser
cat = intake.StacCatalog('landsat8-aws.json')
# or leverage existing tools such as sat-api/sat-search
cat = intake.StacSearch(collection='landsat8', bbox=[], datetime='2017/2019')
cat.filter(bands=['red','green','nir'], cloudcover=20)
# load as xarray dataset:
ds = cat.to_dask()
# need to share STAC catalogs with colleagues / reproduce work later
cat.to_file('my-catalog.json')
Anthony Arendt (arendta@uw.edu)
Rob Fatland (rob5@uw.edu)
Joe Hamman (jhamman@ucar.edu)
Matt Hanson (mhanson@element84.com)
Scott Henderson (scottyh@uw.edu)
Dan Pilone (dan@element84.com)
Andrew Pawloski (andrew@element84.com)
Amanda Tan (amandach@uw.edu)
from dask_jobqueue import PBSCluster
from dask.distributed import Client
cluster = PBSCluster(cores=36,
memory="108GB")
cluster.scale(10)
client = Client(cluster)
from dask_kubernetes import KubeCluster
from dask.distributed import Client
cluster = KubeCluster(n_workers=10)
cluster.scale(10)
client = Client(cluster)
Image Source: James Norton (Element 84)
Image Source: James Norton (Element 84)